Surfar sem morrer na praia (Foucault, Kittler e Mandelbrot, via Deleuze 2013 [1986], Winthrop-Young 2000 e Plant 1997))
Durante um levantamento bibliográfico para um projeto sobre a agência social do silício, me deparei com os últimos parágrafos do livro Foucault de Gilles Deleuze, quando este falou do silício em “máquinas de terceira geração”:
Foi preciso que a biologia saltasse para a biologia molecular, ou que a vida dispersa se reunisse no código genético. Foi preciso que o trabalho dispersado se reunisse nas máquinas de terceira geração, cibernéticas ou informáticas. Quais seriam as forças em jogo, com as quais as forças do homem entrariam então em relação? Não seria mais a elevação ao infinito, nem a finitude, mas um finito-ilimitado, se dermos esse nome a toda situação de força em que um número finito de componentes produz uma diversidade praticamente ilimitada de combinações. Não seria nem a dobra nem o desdobramento que constituiriam o mecanismo operatório, mas algo como superdobra, que vemos nas dobras características das cadeias do código genético, nas potencialidades do silício nas máquinas de terceira geração, assim como nos contornos da frase na literatura moderna, quando à linguagem “nada resta senão recurvar-se num perpétuo retorno sobre si”. Esta literatura moderna que escava uma “língua estranha em sua língua” e, através de um número ilimitado de construções gramaticais superpostas, tende a uma expressão atípica, agramatical, como que visando ao fim da linguagem (poderíamos citar, entre outros e a título de exemplo, o livro de Mallarmé, os ensaios de Péguy, os sopros de Artaud, as agramaticalidades de Cummings, as dobraduras de Burroughs, cut-up e fold-in, mas também as proliferações de Roussel, as derivações de Brisset, as colagens de Dada…). E o finito-ilimitado, ou a superdobra, não é o que Nietzsche já delineava sob o nome de eterno retorno? […] As forças no homem entram em relação com forças de fora, as do silício, que se vinga do carbono, as dos componentes genéticos, que se vingam do organismo, as dos agramaticais que se vingam do significante. Em todos esses aspectos, seria preciso estudar as operações de superdobra, da qual a “dupla hélice” é o exemplo mais conhecido. O que é o super-homem? É o composto formal das forças no homem com essas novas forças. É a forma que decorre de uma nova relação de forças. O homem tende a liberar dentro de si a vida, o trabalho e a linguagem. O super-homem é, segundo a fórmula de Rimbaud, o homem carregado [até mesmo dos] animais (um código que pode capturar fragmentos de outros códigos, como nos novos esquemas de evolução lateral ou retrógrada). É o homem carregado [até] das próprias rochas, ou do inorgânico (lá onde reina o silício). É o homem carregado do ser da linguagem (dessa “região informe, muda, não significante, onde a linguagem pode liberar-se”, até mesmo daquilo que ela tem a dizer). Como diria Foucault, o super-homem é muito menos que o desaparecimento dos homens existentes e muito mais que a mudança de um conceito: é o surgimento de uma nova forma, nem Deus, nem o homem, a qual, esperamos, não será pior que as duas precedentes. (Deleuze 2013:141-2)
Deleuze retomou a mesma ideia em conversa com Didier Eribon:
Foucault mostra que o homem, na Idade Clássica, não é pensado como tal, mas “à imagem” de Deus, precisamente porque suas forças se compõem com forças de infinito. No século XIX, ao contrário, essas forças do homem enfrentam forças de finitude, a vida, a produção, a linguagem, de tal maneira que o composto é uma forma-Homem. E assim como essa forma não preexistia, ela não tem nenhuma razão para sobreviver se as forças do homem entrarem ainda em relação com novas forças: o composto será um novo tipo de forma, nem Deus, nem homem. Por exemplo, o homem do século XIX enfrenta a vida, e se compõe com ela como força do carbono. Mas quando as forças do homem se compõem com a do silício, o que acontece, e quais novas formas estão em vias de nascer? (Deleuze 1992:125)
No artigo “Silicon sociology, or, two kings on Hegel’s throne? Kittler, Luhmann, and the posthuman merger of German media theory”, Geoffrey Winthrop-Young (2000) conecta, de maneira valiosa, esse Foucault de que falou Deleuze e o trabalho de Friedrich Kittler sobre a microeletrônica [1]. Em seu artigo “The city is a medium”, por exemplo, Kittler enfatiza homologias do tipo cidade-corpo-circuito:
MEDIA exist to process, record, and transmit numbers. A Greek city, probably Milet, provides us with two of our oldest forms of media: the coin and the vowel alphabet. Rome, in order to extend itself from a city into a state, adopted the most advanced form of oriental transmission media: the Achaemenidian postal system. […] Thus our terms for media, if not directly, like “heart” or “brain of a circuit,” derived from the human body, stem nonetheless from the city. From the day Shannon applied George Booles’s circuit algebra to a coupling of telegraph relays, the elements which are logically the most simple, and which have no memory, have been known as gates and ports. Circuits, on the other hand, whose initial and final positions are not only a function of the gates and ports, but also of the circuit’s own prehistory, presuppose (no less municipal here) a built-in memory. When the World War II mathematician John von Neumann laid down the principles for sequential working-off or computation for almost all present day computer “architectures,” he bestowed the fitting name “bus” on the parallel channels between hard drive, gate, and memory, and thus extended the Biedermeier tradition of metropolitan traffic. Von Neumann’s prophesy that only computers themselves would be capable of planning their own, more intelligent, next generation, because the complex knot of networks would surpass the planning ability of the engineers, has been fulfilled by computer programs called “routing”: network models, like Shannon’s mouse, which operate as if they were street plans (with all the aggravations of jaywalking and traffic jams). Entire cities made of silicon, silicon oxide, and gold wire have since arisen. Yet the living units or houses in these cities must be measured in terms of molecules whose total surface area, even after having been reproduced millions of times, barely fill a square millimeter. The technologic media miniaturize the city, while magnifying the entropy of the megalopolis. (Kittler 1996:720-1)
Em “There is no software”, Kittler explora a “programabilidade da matéria” na interface entre a escrita humana e a inscrição não-humana:
The last historical act of writing may well have been the moment when, in the early seventies, the Intel engineers laid out some dozen square meters of blueprint paper (64 square meters in the case of the later 8086) in order to design the hardware architecture of their first integrated microprocessor. This manual layout of two thousand transistors and their interconnections was then miniaturized to the size of an actual chip and, by electro-optical machines, written into silicon layers. Finally, this 4004-microprocessor found its place in the new desk calculators of Intel’s Japanese customer, and our postmodern writing scene could begin. Actually, the hardware complexity of microprocessors simply discards such manual design techniques. In order to lay out the next computer generation, the engineers, instead of filling countless meters of blueprint paper, have recourse to Computer Aided Design, that is, to the geometrical or autorouting powers of the actual generation. (Kittler 1997:148)
Not only no program, but also no underlying microprocessor system could ever start without the rather incredible autobooting faculty of some elementary functions that, for safety’s sake, are burnt into silicon and thus form part of the hardware. Any transformation of matter from entropy to information, from a million sleeping transistors into differences between electronic potentials, necessarily presupposes a material event called reset. […] In principle, this kind of descent from software to hardware, from higher to lower levels of observation, could be continued over more and more orders of magnitude. All code operations, despite such metaphoric faculties as call or return, come down to absolutely local string manipulations, that is, I am afraid, to signifiers of voltage differences. (Kittler 1997:150)
And when the integrated circuit, developed in the 1970s out of Shockley’s transistor, combined on one and the same chip silicon as a controllable resistor with its own oxide as an almost perfect isolator, the programmability of matter could finally “take control,” just as Turing had predicted. Software, if it existed, would be just a billion-dollar deal based on the cheapest elements on earth. For in their combination on chip, silicon and its oxide provide perfect hardware architectures. That is to say, millions of basic elements work under almost the same physical conditions, especially as regards the most critical, namely, temperature-dependent degradations, and yet electrically all of them are highly isolated from each other. Only this paradoxical relation between two physical parameters, thermal continuity and electrical discretization on chip, allows integrated circuits to be not only finite-state machines like so many other devices on earth, but to approximate that Universal Discrete Machine into which its inventor’s name has long disappeared. (Kittler 1997:153-4)
E em “Protected mode”, Kittler explora algumas especificidades da gênese de fronteiras eletrônicas numa espécie de micropolítica do silício:
“What began as the simple capability of switching between the supervisor and the user stack in Motorola’s 68000 – naturally, a secret rival system – is extended to system-wide procedure in the separation of Real Mode and Protected Mode. Different command sets, different address possibilities, different register sets, even different command execution times, henceforth separate the wheat from the chaff, the system design from the users. Thus it is precisely in the silicon on which the prophets based all their hopes for a microprocessed democracy of the future that the elementary dichotomy of modern media technologies again returns. (Kittler 1997:160)
When all is said and done, this would also be a good reason for computer scientists from other countries – that is, somewhere between Japan and Europe – to oppose the US bureaucracy submerged in silicon with other possible bureaucracies. Whether there are better ones is beside the point because they would in any case also have to be bureaucracies; but a competition between different systems and different bureaucracies would as such already allow the subjects of MS-DOS to breathe a little easier. (Kittler 1997:162)
Of course, as long as the celebration of the triumph of IBM-compatibility continues, the demand is for strategy, more so than sociology. With its move out of front offices and everyday language into the micrometer realm, power has also changed the processes and the working surfaces. The unequivocal ‘no’ of an access denied is no longer a given in binary code, simply because the entire hierarchical standard of self-similar program levels – from the highest programming language down to elementary machine code – rests completely flat on the material. In silicon itself there can be, to borrow from Lacan, no other of the other, which is also to say, no protection from the protection. (Kittler 1997:162-3)
Em seu artigo, Winthrop-Young pergunta:
And which informed reader can ponder the famous wager at the conclusion of The Order of Things that — in consequence of some “outside event” Foucault refuses to specify — “man would be erased, like a face drawn in sand at the edge of the sea” without wondering whether it is not precisely the compression of that very sand into silicon that erases the face and gives rise to a post-human(ist) techno-episteme? (Winthrop-Young 2000:402)
E num texto posterior, Winthrop-Young oferece uma resposta:
By grounding Foucauldian discourse analysis in his own brand of media theory Kittler can be more specific: discursive regimes of the late eighteenth century drew the figure of man into the sand, and even if he manages to survive the etching, typing, and storing of the late nineteenth-century analog media, he is certain to disappear with the compression of that sand into silicon. The only thing that remains constant is the sound of the sea. (Winthrop-Young 2011:81)
O Foucault de Deleuze, porém, diferentemente do Kittler de Winthrop-Young, parece muito mais interessado no devir do humano do que no desaparecimento do humano – surfar sem morrer na praia. Kittler afirma que o silício exige da sociologia uma “conceitualização da morte e do inorgânico” [2], mas isso não deveria significar “deixar de lado os engenheiros que escrevem pequenas estruturas de silício” [3], mas talvez incluí-los na “natureza que se calcula a si mesma”. Algo mais na linha de Sadie Plant quando fala sobre como a praia de Benoît B. Mandelbrot conecta tapetes de bambu e jogos de computador:
How long is the coast of Britain?” When Mandelbrot had tried to measure it in the 1970s, the length turned out to be dependent on the scale at which he worked. The finer the detail, the longer the line. And inside the discrepancies between the scales there were patterns repeating themselves, recursive arrangements, spirals and whorls, patterns leading into the line, as if down through the crack, opening the boundary into worlds of its own. Mountains, leaves, horizons: any deceptively straight edge will do. There are fractal patterns inside them all. But Mandelbrot’s example of the coast was a peculiarly well-chosen line. Whichever way this border is drawn, the break between the land and the sea is always more than a single edge. Like every thread, this strand is also a folded fold, a pleated pleat, a zone of replication and duplicity which both connects and separates the land and the sea. To one side of this borderline there is a beach: not a stable boundary but a fine-grained line of shifting sand, a hazy border, and a multiplicity. The breakers of the surf which lie on the other side of the borderline is a seething, heaving, and momentary tract, repeating the patterns and rhythms of tides. […] These amphibian zones assemble “midway between the fluid and the solid,” forming an interface of parting and connectivity which is continually reengineered, sieved and filtered by an ocean which continually sifts the sand. It is on this edge that both the ocean and the land fuse into beaches, strands of silicon. The digital age which allowed Mandelbrot to simulate his fractal coastline is an age of bacteria, an age of fluidity, and also an “age of sand.” Ninety-five percent of the volume of the Earth’s crust is composed of silicates, which are vital to the processes by which soil and plants are nourished. In humans, silicon functions in the cells of connective tissues and contributes to the growth of bones and nails, and it is also present in bacteria, animals, and some plants such as reeds and bamboos. Five hundred years of modernity fades when the weaving of bamboo mats converges with the manufacture of computer games in the streets of Bangkok, Taipei, and Shanghai. The silicon links were already there. (Plant 1997:252-3)
Notas
[1] As seguintes aulas de Kittler, ministradas em 2005 e 2010 na European Graduate School, apresentam uma amostra do tipo de contribuição que seu trabalho oferece para uma sociologia da microeletrônica: “Computing, Ubiquity and the One Single Medium“; “Electric Telegraphy, Trams, U-Bahn and S-Bahn“; “Electricity, Electronics and the March of Technology“; “Evolution of Programming Languages” 2010; “Non-Linear Oscillators & Computer Motherboards” (Partes 1/2 e 2/2; “Phantom Computing, Silicon technology & Human Merging” (Partes 1/2 e 2/2); “The relation of art and techne” (Partes 1/6, 2/6, 3/6, 4/6, 5/6 e 6/6); “Transmission and Storage Medium“; “Wireless Radio and Frequency Identification“; “Claude Shannon’s Mathematical Theory of Information“; “WWII Aftermath & Theoretical Consequences“; e “Principles of Computer Graphics”
[2] “To include silicon into sociology […] would mean to also conceptualize death and the inorganic” (Kittler apud Winthrop-Young 2000:412).
[3] “Silicon is nature! Silicon is nature calculating itself. If you leave out the part of engineers who write little structures on silicon you see one part of matter calculating the rest of matter.” (Kittler in Gane e Sale 2007:324).
Referências